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SUMMARY

Heat-transfer and skin-friction parsmeters obtained from exact
numerical solutions to the laminar compressible-boundary-layer equatlons
for the infinite cylinder in yaw are presented. The chordwise flow in
the transformed plane 1s of the Falkner-Skan type. Solutions are given
for chordwise stagnation flow wlth both a porous and a nonporous wall.
The effect of a linear viscoslty-temperature relation is compared with
the effect of the Sutherland viscosity-temperature relatlion at the stag-
nation line of the cylinder for a Prandtl number of 0.7. The effects of
pressure gradient, Mach number, yaw angle, and wall temperature are inves-
tigated for a linear viscosity-temperature relation and a Prandtl number
of 1.0 with a nonporous wall.

The results indicate that compressibility effects become important
at large Mach numbers and yaw angles, with larger percentege effects on
the skin friction than on the heat transfer. The use of the two different
viscosity reletions glves about the same resulis except when large changes
in temperature occur across the boundary layer, as for a highly cooled
wall. The present solutions predlct thet a larger amount of coolant would
be required at a given large Mach number and yaw angle than would be pre-
dlcted from solutions of the corresponding incompressible~boundary-layer
equations.

INTRODUCTION

The*so-called simllar solutions of the laminsr-boundary-layer egua-
tions are obtained by imposing certain restrictions on the external flow
and the wall temperature and assumihg that the dimensionless profiles of
veloclity and temperature are functions of a single varisable. The governing
partial differential equations then reduce to ordinary equations, and the
qualitative effect of various parsmeters on the boundary-lsyer character-
istics can be investigated with much less computing labor than for the more
general case. The similar solutions are also useful as a check on the
accuracy of approximate integral methods and as the basic information for
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constructing approximste methods of the plecewise type, such as those of
references 1 to 3. Furthermore, the similar solutions are exact for a
few physically real flows, such as those which occur on flat plates, the
stagnation region of cylinders and bodles of revolution, and wedges in
flows with constant fluid properties.

Similar solutions for constant-property flows are given, for example,
in references 4 and 5, where the effects of pressure gradient on the
veloclty profiles and skin friction are considered. Solutions for the
corresponding temperature profiles and heat transfer are glven by Squire
and Sibulkin for stagnation-type flows (refs. 6 and 7) and for various
pressure and wall-temperature gradients by Schuh and Levy (refs. 8 and 9).
The effects of transplration cooling in constent-property flows are glven
in reference 10.

In references 11 and 12 the fluid properties were assumed to vary &as
powers of the temperature; solutions with transpiration cooling were
included, but the results apply only to low-speed flows. In references 13
and 14 the product pu of density and viscosity was assumed to be constant
in accordance with the perfect-gas law and a linear variation of viscosity
with temperature. These solutions are not restricted to low-speed flows
when the Prandtl number is 1.0. Several solutions with transpiration
cooling were included in reference 13. The effects of transpiration
cooling on the heat transfer at the stagnation point of cylinders and
bodies of revolution is presented in reference 15 for a constant value
of pu and a Prandtl number of O.7.

The boundary layer on infinite cylinders in yaw can also be treated
by the methods of similerity; and, in fact, for constant-property fluids
the chordwise flow is independent of the spanwlse flow, which can then be
calculated by using the solutions already evailable for two-dimensional
cylinders. (See, for example, ref. 16.) When the fluid properties are
allowed to vary, the chordwise flow is no longer independent of the span-
wise flow and the equations for the two components must be solved simul-
taneously. This problem has been consldered by Crabtree (ref. 17) and
Moore (ref. 18) for a constant value of pi, zero heat transfer, and &
Prandtl number of 1.0; solutions are given for small values of the yaw-
angle parasmeter A in reference 19. Solutions for finite heat transfer
and small values of A are given in reference 20. In reference 21 solu~
tions are given for the flow at or near the stagnation line with finite
heat transfer and large values of AN for Prandtl numbers of 1.0 and Q.7.
Solutions for the case of large suction but small values of A and a
Prandtl number of 1.0 are gliven in rYeference 22.

Fay and Riddell (ref. 23) present solutions for the flow of a real
gas, including the effects of dissoclation, at a three-dimensional stag-
nation point. They conclude, for example, that, when the Lewls number is
near 1, & heat-transfer parsmeter in terms of a local Nusselt number and
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Reynolds number depends mainly on the total veriation of pu across

the boundary lsyer. For high cooling rates the effect of fluld properties
becomes more importent. Thus, for a ratio of wall enthalpy to local
stream enthalpy of 0.05, the heat-transfer parameter 1s sbout 65 percent
of the value predicted by reference 15 for a constant value of pp.

In the present paper the effects of wall temperature, Mach number,
fluid properties, and transpiration cooling on the heat transfer and skin
friction of yawed infinite cylinders are considered. The external flow
in the transformed plene is required to vary as a power of the chordwise
distance from the leading edge or stagnation line; the injected gas 1is
the same as the boundary-layer gas, that is, the gas is homogeneous
throughout; and the wall temperature is constant. The density variation
is given by the perfect-gas law, and the specific heat and Prandtl num-
ber are assumed to be constant. Solutions are presented for Prandtl num-
bers of 0.7 and 1.0, for ratios of wall temperature to stagnation temper-
ature from O to 1.0, and for values of the ysw-angle parameter up to 11.0.
For a Prandtl number of 1.0 and a linear-viscosity-temperature relation,
the pressure gradient is veried from the infinitely favorable to the value
for chordwise separation. For the flow at the stagnation line of the cyl-
inder, solutions are calculated by using both the Sutherland and the
linear viscosity-temperature relations. Numerical examples are glven to
illustrate the effect of yaw angle and viscosity relastion on the quantity
of coolant required to maintain a given wall temperature.

SYMBOLS
4A,B,K arbltrary constants
a speed of sound
a,b constants in interpolation formula for tg,. (eq. (48))
C constant in Falkner-Skan velocity distribution (eg. (1a))
cP specific heat at constant pressure
f chordwise velocity function; related to stream function by
equation (All)
g spanwise velocity profile function, v/ve'

w2 + v2
B stagnation enthalpy, cPT + —
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. heat-transfer-coefficient parameter (eq. (40))

static enthalpy

thermal conductivity

reference length

Mach number based on resultent or total component of flow
exponent in Falkner-Skan velocity distribution (eq. (la})

local Nusselt number, hx/k,

Prandtl number, cpp/ k

pressure
heat-transfer rate per unit area
constant in perfect-gas law (eq. (A3))

PyieX
W

local Reynolds number,

recovery factor (eq. (43))

Sutherlsnd constant (eq. (A2))

temperature, °R

chordwise and normal velocities, respectively, in transformed
plene (eq. (Bl))

chordwise, spanwise, and normal velocities, respectively, in
physical plane
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@B,
a.
2m
B m+ 1
Y
4

resultant velocity component, (u2 + v2)l/2

transformed coordinates (eq. (AT))

chordwise, spanwlse, and normal boundary-layer coordinates,
respectively, in physical plane

constants in interpolation formule for b (eq. (¥7))

acute angle In chordwise plane between line tangent to surface
and free-stream direction

ratio of specific heats

ts 1 dug

tg - —

7-1Ee2'3”wdx
(at>

1 simlilarity variable (eq. (A10))
H -
6 enthalpy profile funection, —¥*—
H, - Hy,
B*,S*,G,E,G,G* integral-thickness paremeters 1n transformed plane
(eqs. (B13))
A angle of yaw {(complement of acute angle between free-streem
flow direction and cylinder axis)
A yaw-angle parameter; ratio of total stagnation temperature to
stagnation temperature of flow component normal to cylinder
i viscosity coefficient
v coefficient of kinematic viscosity, p/p
P mass density
T shear stress
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¥ - stream function

w coolant mass flow per unit area, P Vs

@ dimensionless coolant-flow ratio, EEEE
Py, 0

Subscripts:

e local flow outside boundary layer (unless otherwise noted)

t total stagnation conditions in free stream

W wall

s external flow at stagnation line of cylinder

0 ahead of bow shock

aw adiabatic wall

c coolent

tr - -transformed similarity plane

D physical plane

st static

A prime denotes differentiatlion with respect to 1.
EQUATIONS AND CONDITIONS FOR SIMIIAR SOLUTIONS

The general boundary-layer equations for the infinite cylinder in
yaw reduce to ordinary differential equations when the dimensionless
velocity and enthalpy profiles are assumed to be functions of a similarity
verisble and when certain restrictions are imposed on the external flow
conditions and the gas properties. (See_appendix A.) The external flow
in the transformed coordinate system is restrict?d to the Falkner-Skan

type:
U, = ox* . (12)
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where C and m are constants. In terms of the physical flow this
relation may be expressed as '

m

o =clef {7 Py s 4 (1b)
P Py

from the definitions of U, and X. The local speed of sound ag mey
be written as

8o = at\/;s -1 1(55)2 (2)

from the definition of t; and the use of the adlabatic-energy equation
In the external flow. The parameter t; depends on the stream Mach num-

ber and yaw angle as given by the expression

-1

1+ 7 5 Mmzcos%A

tg = —— _ (3)
l+7; M

The so-called similaer solutlions cen be classified into two general
categories depending upon the additional restrictions used. In the first
of these categories (subseqpently referred to as class I flows), the
chordwise velocity u, is zero or negligible in comparison with the

speed of sound. Such flows exist at or in the vicinity of a stagnation
point or line and on a cylinder at very large yaw angles. The second
category (class II flows) is obtained when the value of U 1is arbitrary.

Further restrictions and assumptions which, in the present investi-
gation, apply to both categories are

(1) Prandtl boundaery-layer equations for the steady flow of a homo-
genecus gas

(2) Perfect-gas law
(3) Constant specific heat and Prandtl number

(k) Constent wall temperature
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Claess I Flows

The final ordinary differential equations for class I flows subject
to the restrictions and assumptions listed previously asre as follows
(see appendix A for derivation):

() + g2 = B (217 - -j—s[(l - )0 - (1 - t5)e” + tw] (4)

(fe') + f&' =0 (5)

(o)’ + Np£0' = (1 - NPr)i'. . ::[¢(g2)':|’ (6)

where the prime denotes differentiation with respect to the similarity
veriable 1. The boundary conditions on equations (4) to (6) are, at
1 =0y

(v"’ due (7)

-1/2
f = aw _|[—%
W\B ax )
where f£ = 0 for a nonporous wall and
f'=6=g=0 (8)
As 1 - o,

f'' =0 =g=1 (9)

For zero aerodynemic heat transfer the additional conditlon required to
determine the wall tempersture is that 9& = 0.

The general expression for the viscosity function ¢ is

: ;=1
N [ N (10)

which, after introduction of the Sutherland viscosity relation, becames

1/2
;. (tw + s)[l + (%1; - 1)9 - %;(1 - ts)gz:‘ (100
ty+ 5+ (1 - t)0 - (1- tg)&™
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If the viscosity ls assumed to vary linearly with temperature according
to the relation
p = %§ T

¢ =1 (10b)

equation (10) is reduced to

The functions f', g, and O are the dimensionless chordwlse velocity,
spanwise veloclty, and enthalpy profiles, respectively. The normal

veloclty at the wall W, i1s determined from equation (7), where £

must be a constant.

Class II Flows

For class II flows the chordwise velocity may have any wvalue so long
as equation (1b) is satisfied and the additional restrictions of Npr = 1.0

and ¢'= 1.0 are imposed. (See appendix A.) The equations wilth these
conditions are

£y £ = pd(£)2 - %I:(l - 1,08 - (1 - t5)e® + tW] (11)

g" + fg' =0 (12)

8" + f8' = 0 (13)

For equations (11) to (13) the boundary conditions are, at 3 = O,

g\ -1/2

v - 1 u.“\du

= w | ¥ 4 e e

£ w3 1+ 5 ae%/dx . (1%)
f' = e = g = O (15)

end, at 1 — e,

f' =8 =g=1 (16)
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Inasmuch as the spanwise veloclty proflle g 1is exactly the same as the
enthalpy profile 6, equations (11) to (13) reduce to a fifth-order sys—
tem. The normal velocity at the wall w_, 1s

W
1/2
£ (1 -1 5—2 e (17)
= - + :
Y v| B 2 8.2/ 1

from equation (14), where again fw must be constant.
GENERAL EXPRESSIONS FOR HEAT TRANSFER AND SKIN FRICTTION

Transformation Relations Between 2z and 1

Since expressions for the heat transfer and skin friction involve
derivatives normsl to the wall, it is useful to consider the trans-
formation from the physical xz-plane to the similarity plane Xn. From
appendix A the normal derivetive is

8. p fm+ 1Us 9
=& £ =2
8 PgY 2 wvX o (18)

Differentiation of equation (1b) written in the form

o = c[ts 15 1(,;__%)2]1/2xm

and the use of the Stewartson transformation yield

" .
Ue _ Ea(iz) Bept dug (19)
X “wpw dx

Substituting equation (19) into equation (18) and evaluating at the wall
then give
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or for brevity

CREC)

vhere { is a function of x only. Similarily, it can be shown that
for a given x-statlon the relation between 2z and 17 is

1
7 = —L_ u/\ t dy (21)
et Vo
where the temperature ratio t 1is, in general,
2 7-1%2 2
t=(l-tw)6-(l-'bs)g + - 12 a—t-)(f) (22)

Local Heat Transfer and Skin Friction

The heat-transfer rate per unit area at the wall is

)

which, from the definitions of H and 6, may be written as

Gy = kw<Tt - TW)(%%)W

Then from equation (20)

0 = ke (Ty - T)te, (23)
Combining equations (23) and (14) yields the relation
P W 1 i

a, =-%r_ __‘f‘fw"'('rt - tlzw)eW (232)

which shows that for a given similar flow a4, varies with x directly
as the coolant mass flow since 9; and’ £ are independent of x.
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From equation (23) the expression for the local heat-transfer param-

eter NNu/’Re is : - -

1/2
NNu = hx/kw _ tS ¥ due T‘t - TW’ el (2]-1-)
-1 2 pu, dx Ty = W
{E; pruex by 8y - 2 - (E%) e aw = Tw

Equation (24) may also be written in a form that does not include a
velocity-gradient term by using equation (18) directly in the expression
for q_ 2 preceding equation (23). After the definitions of B and X
are in%roduced, the result is : -

1/2
m 2 =
N % T, -
Nu _ 2lB ~ Tt .T_t_TW_.e;r (24a)
¢§; - WPy Be gy aw ~ Tw
0 HPy Ot

When x -0, as at a stagnation line, equation (2ha) reduces, in the limit,
'tO ’ ’ : o

N Ty - T
My LT W, (24p) 2
Vﬁg 2 -8 Tow -~ Ty

A heat-transfer parameter'which for given stream conditions is
proportional to the heat-transfer coefficient h may be written as

_1/2
hlfke | Puby cos A(i due) ts T = To o' (o)
‘["“"“‘ Pt B U dx -1 u?2 Tow - L ¥
pmur’wl/pco o0 tg - 2 > 1 E§§ aw
8¢

from equation (24) and the assumption that  kw/kQ = pw/uw.

The expressions for local chordwise and spanwise skin friction may
be written as

ch W

T (&), - ma e, (26)

uwveqfé; (27) »

1
3
n
g
2%./
I
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The total component of the local skin friction in the direction of the
free stream is then

3 ] t
Teotal = pwﬁ(fw cos o cos A + g sin A) (28)

where o is the angle in the chordwise plane between a line tangent to
the surface and the free-stream direction.

Simplified Heat Balance

In the sbsence of lateral heat conduction within the porous wall
and heat loss by radiation, all the heat transferred to the wall by the
alrstream must be absorbed by the coolant. If the coolant flow through
the porous wall is assumed normal to the wall throughout and the aero-
dynemic heat transfer is given by equation (25), the resulting hesat
balance is

kw(Tt - TW)JEG; = pwwwcP(TW _.Tc) (29)

where Tc is the initial temperature of the coolant before it enters
the porous wall. Rearranging equation (29) and introducing fW from

equation (14) and a, from equation (2) give a relation between the
rertlinent temperatures and the parameters 6; and fw involved in the
slmilar solutions. This relation is

T -7 e
2 - TSy |
o G0

which, if any two of the three quantities Tw’ Tc’ or fW are known,
determines the remaining unknown value since 6; depends only on tw

and f, for given streem conditions and yaw angle. Typical problems
utilizing equation (30) would be to find the wall tempersture from given
coolant temperature and mass flow or to find the coolant flow required
to maintain a given wall temperature. The latter problem i1s considered
in some detall in the section entitled "Results and Discussion.”

Jf radiation and conduction are included, a more genersl heat bal-
ance, such as that given in references 1 and 15, must be used.
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BOUNDARY-IAYER-THICKNESS PARAMETERS

Transformed Plane

In various applications of the present results 1t is convenient to
have avallable certain boundary-layer-thickness parameters which are
obteined from integration of the velocity or enthalpy profiles over the
boundary-layer thickness. These parameters are defined in the XZ-plane
since transformetion to this plane results in conslderasble simplification
of any compressible-boundary-layer calculation. The particular parameters
included in the tabulated results of the present report are those that
appear in the integral boundary-layer equations which are derived in
appendlx B.

Transformation from the general Stewartson variable Z to the
similarity variable 1 (see sppendix A) requires that any thickness
paremeter in the XZ-plene can be obtained by multiplying the corresponding
paremeter in the similerity plane by the quantity

2 V:tX
m+ 1 Ue

Thus, for example, the displacement thickness 5  in the XZ-plene is

defined as
o9
a*=f - Llag
0 Ué

or, after transformation to the similsrity variable,

* " 2 vX f°° 2 VX ¥
5 =\||—— = 1-£")dn = - B
m+ 1 Ug 0 ( yan m+ 11U tr

Performing the indicated integrat%?n_then yields the following expression
for the displacement thickness’ atr in the similarity plane:

* né |
8,,. = Um (l-f')dn=lim<'q - f +f) (31)
T e e w

T]e—)eo 0 ne_)oo

Similarly, the momentum thickness is defined as
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e; = 1im fone]:' - (f')z:ldﬂ = lim [fe -£ - fone(f')zdn:l

=] [ee]
Ng— N~

which, after integration of the lest term by parts and introduction of
f£f" from equation (%), becomes

1t

6 = 1im —L | -fw-B(fw+q-fe)-B(t—l-l) fone(l-gz)aq_

tr ﬂe“"”l'l'ﬁw 8

B - 1) fone(l - 8)dn (32)

A spanwise perameter Gtr is defined as

T [ 5 - @) (55)
(]

which is the sum of the spanwise displacement and momentum thicknesses.

The thermsl thickness is defined as

8*=lim nel-ed
fo( yan (34)

tr
Tle—’ ®

The final form of the momentum thickness is then obtained by sub-
stituting equations (31), (33), and (34) into equation (32), which becomes

* £, - T * *
_w-tw __B X Lt -
Oy = —— T atr+(ts l)Gtr+ts(tw 1)etr (35)

The remaining parameters appearing in the integral equations (appendix B)
may be considered as convection thicknesses when the analogy between g
and 6 (for Npp = 1) is considered. The spanwise convection thickness

or "mixed" momentum thickness is defined as
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Mg e

E,. = lim £'(1 - gldn = lim (£, - F_ - f gf'dn

xr . e w
T]e—)co 0] AN _ 0

Integrating the last term by parts and using equation (5) result in
Egr =8 - T, _ (36)

Likewlse, the enthalpy convection thickness 1s

n 5]
8, = lim Sfr(1-0)ay = -1, (37)
M= ® 0] 1\IPr

from integration by parts and equation (6). Equations (35), (36), and
(57) show that 6, BE,., and 6. can be written in terms of the

derivatives of the profiles at the wall and the other three integral
thicknesses 51:;., Gy, and 8.;;.

Physical Plane

The momentum and displacement thicknesses in the physical plane can
be expressed in terms of the thickness peremeters in the similarity plane.
The chordwlse momentum thickness in the physical plane is defined as

z 2
6% = 1im el-(-“-) P 4z
p 2= YO [ue Ue) [Pe
which, from equation (21) and the perfect-gas law, may be written

o = fﬂe[f' (£1)2]an

W'{_ T1e"°°

*
= f'. Then, from the definition of etr’

u
since —
_ Ve

(38)

= Ye e*
tr
t o
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According to reference 2, the physical displacement thickness on
a yawed infinite cylinder is not affected by the spanwise mass-flow
defect. Hence, the displacement thickness is defined in the usual way
as

VA
& = lim (1 - _fu )dz
P Zg—r ® 0 peue

*
which, from equation (21), the definition of atr’ and the perfect-gas
law, may be wrltten, after some rearrenging, as

t *
a;= 1im |—& fﬂegl-l)dn+atr
‘r]e—>oo twﬁ 0 e

Substituting equation (22) for t and using equation (32) and the

definition of © ;; then yield

* t -1 2 l+ﬁ * f -Ff
S ( ot LrBlox Ky -ty (59
PUilc|\%s a2 B ) B

COMPUTING PROCEDURE

More than 200 solutions to equations (%) to (6) and (11) to (13)
have been obtained by means of the IBM type TOL4 electronic data pro-
cessing machine. The numerical integration procedure of reference 25
was used, and the procedure described in reference 21 for cobtaining con-
vergence to the correct boundary conditions was lncluded in the automatic
programing for the machine. A step size of 0.2 in 1 was used for most
of the solutlons; however, a step size of 0.1 was used in a few solutions
which are included for comparison in the tabulated results. The accuracy
of the present solutions, except for B> 1.0 and f, < -=0.5, is believed

to be as good as or better than the accuracy of the solutions in refer-
ence 21. The boundary conditions &t large values of 7 on f', g,

and 6 were satisfied to within 0.0001l. The solutlions were carried out
to sufficiently large values of 1 that the absolute values of the
derivatives of the functions f", g', and ©' were <0.0005. For
negative values of B +the absoclute values of the derivatives at large
values of 7 were <€0.00005. In all solutions it was found that these
requirements could be satisfied for 7 € 8. For negative values of B
there 1s a problem of uniqueness (see, for example, refs. 4 and 14) which
is discussed in relation to the present solutions in eppendix C.
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RESULTS AND DISCUSSION

1t T -

The values of £, &, 6, B, Bor, Gy., gy, and e,:; which
constitute the principal results are presented in tables I to IV for
most of the solutions in the present Investigation. All heat-transfer
and skin-friction coefficients or parameters as well as most of the
boundary-layer-thickness parameters can be derived from these tabulated
values as described elsewhere in this report. The solutions included in
each table are summsrized as follows: '

Table B |Npr | ¢ B £y ty A
1.0 0, 0.5, 1.0
I 1.0 1.0 0, -0.5, -1.0 1.0, 1.6, 3.0, 6.5
0.7 0, 0.5, 1.0, tg,
0.2 0, -0.5, -1.0

1.0, 1.6, 3.0,
6 1.0

5,

II 1.0 0.7 {41.0 0.05, 0.5, 1.0, tay
0.02 |0, -0.5, -0.T5, -1.0 _

0.015, 0.050, 0.070,

0.005 0.100, 0.150, 0.200,
0.250, 0.300
II1I(a) 0.5 o.7{#L.0| 0.02 o] 0.06, 0.20, 0.50 1.0
0.0625 0.1875, 0.627
0.2 0.05, 0.50
0.015, 0.050, 0.100, 1.0
0.200, 0.300 .
0.005 0.015, 0.050,
' 0.200, t, 3.0
ITI(b) 1.0 0.7} #1.0 o} ceY aw
oxns,oim,cxzn, 11.0
. aw
0.0625 0.1875, 0.625 1.0
0.2, 0.5,] 4, ) P 0, 0.5, 1.0 1.0, 1.6, 3.0, 6.
Iv(a) 1.5, 2.0 1.0} 1.0 o] s 0.5, P » 3.0, 6.5
Iv{p) <0 1.0] 1.0] ===m-- o) 0, 0.5, L.0 1.0, 1.6, 3.0, 6.5

Velocity and Temperature Profiles at the Stagnation Line

Typical profiles of the chordwise and spanwlse velocity ratlos and
the stagnation-enthalpy difference ratios are shown in figure 1. These
results are for stagnation-line flow (p = 1.0), @ = 1.0, Np,. = 0.7,

and t; = 0.5. Note that a given change 1n the transplration-cooling
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parameter fy, hes a larger effect on the g and © profiles (figs. 1(b)

and 1(c)) than on the f' profiles (fig. 1(a)) and that these effects
tend to diminish as N 1is increased. Inspection of tables I and IT shows
that the same trends are present in the derivatives of the profiles at the
wall. Comparison of figures 1(b) and 1(c) shows that the g and 6 pro-
files are nearly identical for Np,. = 0.7. According to previous discus-

sion these profiles are identicel when Npr = 1.0.

The temperature profile at the stagnation line (x = 0) depends only
on the spenwise profile g and the enthalpy profile 6 as given by equa-
tion (22). The resulting variations in the ratioc of local static tempera-
ture to total stagnation tempersture are shown in figure 2 for
A =1.6 and 6.5 and for t; =0, 0.5, and t,,, and £, =0, -0.5, and -1.0.
This figure illustrates the large changes in temperature distribution that
occur as the yaw angle is increased. The reduction in hest-transfer rate
and recovery temperature with increasing coolant flow are also evident.
In regard to the possibility of dissociation or other real-gas effects, it
is of interest to note that for large cooling rates (small values of tw)

the maximum temperatures in the boundary layer are much lower at large
velues of the yaw parsmeter than at small wvalues of the parameter.

Heat-Transfer Coefficients and Recovery Factors
in the Stagnation Region

Effect of yaw persmeter and trenspiration cooling.- Equstion (25)
shows that for given stream conditions, well temperature, and yaw angle
the heat-transfer coefficient depends only on the parameter h, which is

defined as
P T
Taw = Tw

In figure 3(a), h 1is plotted against A for Prandtl numbers of 1.0
end 0.7 and for £; =0, -0.5, and -1.0. The figure shows that the

parameter B (and hence also the heat-transfer coefficlent) is reduced
considerably by increasing the magnitude of the transpiration-cooling
parameter £, with the largest reductions being obtained for smell values
of A and for Npp = 1.0. A change in the value of the transpiration-

cooling parameter, however, would generally imply & change in the coolant
mass flow and well temperature. Equstion (23%a) can be written in coef-
ficient form as

(ko)

c

D

h =- h (41)

0
r fw

éﬁ
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where w = P Ve Thus, for a finlte normal velocity at the wall, the

heat-transfer coefficient is determined solely by the coolant mass flow

and the parameters f and h. The parameter fw is related to the

coolant mass flow by means of equation (7), which may be written as

-
£o= (42)
¥ [ Pe dug
T, R dx
Then since the quantity J“W/TW is nearly constant for relatively large
changes in wall temperature (for example, & change in T, of 4Loo% R

causes only & T-percent change in \/“W/Tw) equation (42) indicates that

an increase in coolant mass flow o would cause a corresponding increase
in the magnitude of fw and hence, from figure 3(a), a reduction in h.

It then follows from equation (%1), as would be expected, that increasing
w decreases the heat-transfer coefficient h. This effect is shown
directly. in figure 3(b) where the ratio of h with transpiration cooling
to h for a nonporous wall is plotted against A. The ratio of the heat-
transfer coefficients is proportional to the ratio of the values of h
for a constant value of SR Figure 3(b) is not to be interpreted as

indicating an increase in heat-transfer coefficient with yaw angle at a
constant value of , since an increase in yaw angle causes a large
decrease in the local density Py and veloclty gradient due/dx Con-

sequently, for given stream conditions and & constant value of w, an
increase in yaw sngle decreases the heat-transfer coefficient.

The effect of Prandtl number on the heat-transfer coefficient is
shown in figure 3(c) where the ratio of h for Np. = 0.7 to h for

Npp = 1.0 1is plotted against A. This figure shows that the approximate
expression _
h

0.7 o (N

Pr)O.k
1.0

(agl}

suggested in reference 21 is adequate for a nonporous wall but is in con-
siderable error for transpiration cooling.

The recovery factor or recovery temperature must be known before
heat-transfer rates can be calculated from heat-transfer coefficlents.
The recovery factor r defined at the stagnation line as



NACA TN 4345 21

T - T
r = Ta—W_T_S (l{.})
t T s

is plotted sgeinst the coolant parameter fw in figure 4. The variation

of the recovery factor for = fiat plate from reference 1 is also shown for
comparison. Increasing the coolant flow decreases the recovery factor on
both the yawed cylinder and the flat plate. On the yawed cylinder, larger
decreases in the recovery factor are obtained for smell values of ‘A than
for large values of A. 'The recovery factor on the flat plate is, of
course, independent of the yaw parameter.

Effect of viscosity assumption.~ The ratio of the heat-transfer param-

eter h from the solutions calculeted by using the Sutherland viscosity
relation to the corresponding value of h for ¢ = 1.0 is plotted
against A 1in figure 5 for Np, =0.7 and B = 1.0. Three parameters

must be considered: the transpiration-cooling parsmeter fw’ the ratio
of wall temperature to stagnation temperature t, and the ratio of the
Sutherland constant to stagnation temperature s =_S/Tt. If the value

of S 1is taken as 200° R, then s = 0.2 corresponds to ordinary wind-
tunnel conditions with Tt = 1,000° R or to flight conditions with

T, =~ 400° R and M, =~ 3, while s = 0.02 corresponds to T = 10,000° R
or to flight conditions at M = 11.0.

All results from the solutlons for tw = 0.5 fall within the shaded
band in the center of figure 5. For A > 3 and th 0.5, the linear

viscosity relation gives practically the same results as the more accu-
rate Sutherland relation. For A< 3 and tw:g 0.5 +the linear vis-

coslity relstion results in heat-transfer coefficients that are as much
as 15 percent larger than those obtained with the Sutherland relation.
From a comparison of the values of h listed in tables I and II, the
largest deviations are seen to occur when s = 0.02, which for tw = 0.5

is beyond the range of practical wall temperatures. For s = 0.2
and tw = 0.5 the maximum differences resulting from the use of the two

viscosity relations is sbout 10 percent.

For t, = 0.05, & value corresponding to large aerodynamic heat-

transfer rates, the viscosity relation has a large effect for both values
of s. When s = 0.2 with 1%, = 0.05, the use of the linear viscosity

relation results in heat-transfer coefficients that are from 10 to 50 per-
cent smaller, with the differences increasing as the transpiretion-cooling
rates are increased. For s = 0.02 and tw = 0.05 +the linear relation

has the opposite effect in that the heat-transfer coefficients are from
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20 to 80 percent larger, with the largest deviations occurring sgain at

the largest values of f,. At some Intermediate value of s the vis-

cosify assumptlion might be expected to have lititle effect even for the
large heating rates. For all conditions except s = 0.2, bty = 0.05,

end f,; = 0 and -0.5 the effects of the viscosity assumption tend to
become smaller as the yaw-angle parameter A- 1is increased.

The effect of viscosity assumption on the varistion of heat-transfer
coefficient with yaw engle or yaw-angle parameter may be obtained from
figure 5 by noting that

Bftaeg  _ _Bfbga BB
(h/ hA=0)¢=l (h/ h¢'l)A=o (ﬁ/ E¢-1)7\—o

since from equation (25), nh is proportional to ﬁ, for given stream
conditions, well temperature, snd yaw angle. This relstion and figure 5
then indicate that (except for & =.0.2 and fy = -1.0) when the

Sutherland viscosity relation i1s used the predicted decrease in heat-
transfer coefficient with yaw angle is somewhat smaller than when the
linear viscosity relation i1s used.

The ratio of recovery factor r from the solutions computed by
using Sutherland's relation to r for ¢ 1.0 1s plotted against A
in figure 6. This ratio is found to be essentislly independent of the
transpliration cooling inasmuch as all results are within the narrow
bands shown 1In the figure. The viscoslty relation has at most a 2-percent
effect, which depends only on the temperature level (that is, on Tt) and
is a maximum for s = 0.02 and for large values of A.

Real-gas effects.- The assumptions of constant specific heat and
density variation according to the perfect-gas law would be expected to
limit the application of the present results to relatively low temperature
levels where real-gas effects and, in perticular, dissoclatlion effects .are
not important. An indication of the limits of applicability of the present
solutions mey be obtained by comparison with the real-gas solutlions of Fay
and Riddell (ref. 23). |

Since the solutions presented in reference 23 are for the stagnation
point of a body of revolution, any results from the present calculations
must first be transformed to the corresponding axisymmetric configuration
before & valid comparison can be made.

At the stagnation point on & body of revolution, T, = Ty, and from
the Mangler transformation the heat-transfer parameter NNu/Vﬁg is

-
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Jg-times the corresponding parameter in two-dimensional flow with the
velocity-gradient persmeter B = 0.5. The heat-transfer parameter at
the stagnation point on a body of revolution is then obtained from equa-
tion (24b) as

Npy

<J§;>3-dimensional

where G; is taken from the solutions for the unyawed cylinder (A = 1)

with B = 0.5. The principal results of these solutions are given in
table ITI(a), and the resulting values of the heat-transfer parameter for
the stagnation point on a body of revolution are plotted in figure 7

- )

2-dimensional .

Pgtg
ity
correlation given by Fay and Riddell (ref. 23) for their real-gas solu-~
tions of the equilibrium boundery layer with a Lewis number of 1. In
reference 23, the Sutherland viscosity relation was used and the Prandtl
number was assumed to be constant at 0.7l. Since the effects of diffusion
disappear from the differentiasl equations for a Lewlis number of 1.0 (see
ref. 23), the only differences between the present solutions and those of
reference 23 would be caused by the different assumptions for the varia-
tion of density and specific heat. The close agreement between the
results of the present solutions and those of reference 23, as shown in
figure T, therefore indicstes that the heat transfer at a stagnation

point is not sensitive to the effects of dissociation on demsity and
specific heat within the boundary layer. For equilibrium dissociation

and a Lewls number of 1 the heat-transfer rate at a three-dimensional
stagnation point cen then be calculated from the equation (ref. 23)

du H, - w
o o), B

where all quantities would be evaluated for the real-gas conditions

ageinst the ratio . Also shown in figure T for comparilson is the

except NNu JE;, which may be taken from the appropriate solution of the
boundary-layer equations for a perfect gas with a constant value of Cp

and Sutherland viscosity law. The appropriate perfect-gas solution,
according to the correlation of figure 7, would be the one for which the
total variation of pp across the boundary layer is the same as in the
required real-gas conditions.

Whether this procedure can be extended to the stagnation line of a
yawed cylinder is not known since the corresponding real-gas solutions
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for thls case are not yet avallasble. Such an extenslon would appear
reasonable, however, if the perfect-gas solutions for the yawed cylinder
could be correlated in & form similer to the results for a three-~
dimensional stagnation point. In order to investigate this possibility,
several additional solutions for the yawed cylinder (B = 1) were obtained
for the range of condltions used 1n the solutions for $ = 0.5. These
results are presented in table III(b), and the heat-transfer parameter is
plotted 1n figure 7. For small values of s +the heat-transfer parameter
for p=1 and A =1 to 11 is correlated within about 4 percent by the
expression

RIS
Nipu Pghs °
M - g,5(28E (45)
o )

The values that are not correlated by equation (45), that is, the values
for A =6.5and 11 with s = 0.2, are not representative of flight con-
ditions since such values occur at large Mach numbers and large yaw angles
but with Ty = 1,000° R. By analogy with the results for a three-

dimensional stagnetion polnt, it may be assumed that the heat transfer at
the stagnation line of a yawed cylinder in a real-gas flow (with equi-
1librium dissociation and a Lewis number of 1) can be calculated from
equations (44) and (45) with H, replaced by the adisbatic wall

enthalpy Hg,. From equation (43}, the value of Hy, would be

B = r(He - 15) Fig

where, from the adiabatic-energy equation, i 1s defined as

and from figures 4 and 6 the recovery factor is approximately

r s NPI‘ ' ' -

The effect of the viscosity relation at a three-dimensional stag-
nation point can be obtained from figure T by comparison of the results

of reference 15 for Psts _ 1 with the present solutions. The use of
W

the Sutherland viscosity relatlon for the range of t and s in the

present solutions predicts smaller values of the heat-transfer parameter
than those given by reference 15 for a linear viscosity relation. The
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meximum effect is found again for small values of t, and s; for
example, with %, = 0.01> and s = 0.005 the heat-transfer paremeter
is about 50 percent of the value given by reference 15.

Variation of Coolant Flow and Wall Temperature With Yaw
Angle at the Stegnation Line of a Cylinder

Interpolation formulas for h.- The problem of calculating the wall
temperature from given stream conditions, coolant temperature, and coolant
mess flow may be solved by means of equations (30) and (42) and graphical

interpolation for h and taw‘ The general procedure would be to assume
e wall temperature and calculate a first aspproximstion for £y, from equa-
tion (42). This value of f,, together with the assumed wall temperature

and stream conditions, is used to determine h and tyy £from interpola-
tion in figures 3(a) and 4. The corresponding value of 6; is then used

in equation (30), which is solved for T, Only one or two iterations

would normally be required because the quantity “w/Tw is such a week
funetion of T,. :

A problem that is perhaps of more interest is to determine the
quantity of coolant required to maintain a given wall temperature. Since

G& is a function of £, equation (30) has to be solved by & trial-and-

error process for £, after which the corresponding coolant mass flow is

determined from equation (42). This trial-and-error process, however,
would be tedlous and inaccurate since interpolation for G; as a function
of %, A, and £y would generally be required. The limited nunber of
solutions availeble, as well as the behavior of 6& for T, —T,,,, makes
such an interpolation impractical. On the other hand, the funetion h

is in the form of a coefficient and hence remains finite for all values
of +t,. Thus, in order to facilitate interpolation, equation (30) is

wrltten in terms of h as

i S Taw =Ty B
v oo -7, Fer

C

(46)

and h is assumed to have the form

- [=.2, = - 2 -, 2 = = - . 2,3 -
h = <?Otw + Boty, + 7q>fw + <é1tw + Byt * 7%>fw + (éatw + Betw + 72)
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where &, P, and 7 are constants for any given set of A, Np,, and s

or ¢. In general, nine exact solutions at a fixed value of A would be
required to evaluate the nine constants in equation (47). For Npy = 1.0,

the required nine solutions are available, but for NPr # 1.0 (see

tables I to III), only six solutions are avallable for evaluating the con-
stants since the limiting value of h for Ty = Taw apparently cannot be

calculated from the zero-heat-transfer solutions. However, for Np, # 1.0,
the seme form of equation (h?) wes retained by assuming that at t =t

<g—E;:)I‘Tz’r;é:L.o ) (?%)N

Pr=1.0

aw

The resulting values for the constants in equation (47) for both Npo. # 1.0
and Np,. = 1.0 are given in table V. For Np, # 1.0 the recovery tem-
perature 'taw is assumed to be linear in £, (for Npp = 1.0, 1, = 1.0)
since from figures 4 and 6, r is linear in fw' to within about 0.25 per-
cent. Hence, for the application of equation (46), taw is given by the
equsation

toy = & + BEy, (48)

The constants & and b are also listed in teble V. Combining eque-
tions (46), (47), and (48) glves a quadratic equation in £ for

Npy = 1.0, and for Np, % 1.0 there is obtalined a cubic equation which
can be easlly solved for f by standard graphical methods. The inter-

polation formulas (47) and (48) are also convenient in the first type of
problem in which the well tempereture is calculated from given coolant
mass flow.

Typlcal exsmples.- Equations (46), (47), and (48) have been used to
calculate the coolant mass flow required to maintain a constant wall tem-
perature in the following three examples:

Example Ty Ty To Moo
1 10,000 1,500 ‘1 500 10
2 1,800 800 500 10
3 2,000 1,500 200 T
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Exemples 1 and 2 represent flight and wind-tunnel conditions, respec-
tively, at M, = 10. Example 3 represents flight conditions at M_ = T.

The results are shown in figure 8(a) where the parsmeter (from eq. (42))

& - P 1 Qe
o mw 1/2 = wgm cos A T fw
<poour,°°7' Tw)

which is directly proportional to the coolant mess flow, is plotted
ageinst yaw angle for ¢ = 1.0 with Np,. = 1.0 and 0.7. Examples 1

and 2 have also been calculated for @ # 1.0 with Np,. = 0.7 and
8 = 0.02. The values used for the velocity-gradient parameter (&&-%EQ)

were taken from reference 21 for a circuler cylinder.

Figure 8(a) shows that the coolant mass flow required to maintain e
given temperature decreases with Iincreasing yaw angle, as would be
expected from previous discussion. At small yaw angles considersbly more
coolant 1s required for Np,. = 0.7 than for Np, = 1.0; however, the
effect of Prandtl number is not so large for large yaw angles. The
curves calculated for exesmples 1 end 2 with s = 0.02 1ndicete that the
use of the Sutherlend viscosity relation predicts that less coolant is
required than when the linear viscosity relation is used. The variation
with yew engle is about the same for both viscosity relations. Note that
in example 1 the curve for @ #£ 1.0, Np,. = 0.7 1s almost the same as

the curve for ¢ = 1.0, Np, = 1.0.

In figure 8(b) the corresponding veriation of £y with A 1s shown

for these examples. This varilation is essentlally an effect of compressi-
bility in the boundary layer since for an incompressible boundary layer £
would be Independent of yaw angle. The present solutions predict, there-
fore, that at large Mach numbers and yew angles the coolant requirements
would be some 50 percent larger than for an incompressible boundary layer
with the same wall temperature and external flow conditions.

Effect of Pressure Gredient and Yaw-Angle Parameter on
Skin Priction and Heat Transfer

The effects of the pressure-gradient parameter P and the yaw-angle
parameter A on the heat-transfer and skin-friction parameters for. three
different ratios of wall temperature to stream temperature are shown in
figures 9 and 10. These solutions are for the conditions of ¢ = 1.0,
Npy = 1.0, and fw = 0. The heat-transfer and skin-friction parameters,
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as well as other pertinent data from these solutions, are also given in
table IV,

Figure 9 indicates that the effects of pressure gradlent on the heat-

transfer parameter 6; or the spanwise skin-friction parameter g; (for
)

Np,. = 1.0, 8, = g;) become larger as the wall temperature and yaw param-

eter are increased. For negative or favorable pressure gradients (posi-
tive values of ) the values of 6; and g& are increased as the yaw

parameter A and the temperature ratio t, are increased. For adverse

pressure gradlents, corresponding to negative values of P, the values of
6; or g& decrease considerably with lncreasing N or t, . For zero

pressure gradient, 6, or g, 1is independent of both A and t,. The

effect of these changes on the actual heat transfer or skin friection
would have to be calculated from equations (23) or (27) for any given set
of flow conditions and wall temperature.

The chordwlise skin-friction parameter f: is plotted egainst B

for three wall-temperature ratios and four values of A in figure 10.
The trends shown in figure 10 are the same as those Just discussed for
1
Oy
than in the other parameters. These large varlations are particularly
noticeable for large values of N and t_,. The local skin friction

must again be calculated for any particular case from the appropriate
equations (eq. (26) or (28)).

or g;; however, the percentage variations in f; are much larger .

" The value of the pressure-gradlent parameter B requlred for
fw = 0, implying separation of the chordwlse flow, 1s plotted against
A in figure 11. This flgure indicates that decreasing the temperature

would delay separation, while increasing the yaw angle (at a sufficiently
large stream Mach number) would move separation forward.

The ratic of the chordwise skin-frictlon parameter to the spanwise
skin-friction parameter f;/&; is indicative of the degree of secondary

flow in the boundary layer, as -discussed in reference 21. The values of
these skin-friction parameters listed in table IV show that the

retio ff,/g“r 18 & maximm for B = 2.0, unity for a flat plate (B = 0)
where there 1s no secondary flow, and zero for chordwise separsation

where the "surface" streamline is exsctly in the spanwise direction.

The problem of uniqueness for the solutions with negative B 1is
discussed in eppendix C. The particular solutions presented in table IV -
were obtalned by application of the convergence procedure of reference 21
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at 1 =8. The tebulated solutions also satlsfy the boundary conditions
on £' and 6 at 1 =8 to within 0.00001 with the sbsolute values of
" and 8' € 0.00005. It was found that f£' € 1.00000 throughout the
boundery layer when these conditlons were satisfied and that application
of the convergence procedure of reference 21 to values of 1> 8 resulted
in no appreciable changes in f or B

CONCLUDING REMARKS

General equations for the heat transfer and skin friction in the
leminar compressible boundery layer on infinite cylinders in yaw are
presented for the case in which the veloclity and enthalpy profiles are
functions of & similerity variable. By means of numericel solutions of
the boundary-layer equations, the effects of transpiration cooling,

Prandtl number, and viscosity relation were obtalned for stagnetion-line
flow. The effect of chordwise pressure gradient was investigated for a
nonporous wall, a Praendtl number of 1.0, and a linear viscosity-temperature
relation.

Transpliration cooling reduces the skin-friction and heast-transfer
coefficients by large amounts, with the largest percentage reductions
occurring at small yaw angles and for a Prandtl number of 1.0. The effect
of Prandtl number Np,. on ‘the heat-transfer coefficient is given approxi-

mately by (NPr)O 4 for a nonporous wall, however, for a porous wall this
expression is in considerable error.

Because of an overall reduction in heat-transfer cceffilclent with
yew angle A, the quantlity of coolant required to maintain a given wall
tempereture decreases with increasing A; however, this decreasse 1s not
so laerge as that which would be predicted from solutions of the
incompressible-boundary-liayer equations.

Comparison of solutions computed by using the Sutherland viscosity-
tempersture relation wlth solutions computed by using the linear viscosity-
temperature relation indicates agreement in heat-transfer coefficients to
within about 10 percent when the ratio of wall temperature to stagnation
temperature E;/T%3% 0.5. When T_ /T, = 0.05, the heat-transfer coeffi-

cients from the two sets of solutlons for a cylinder differ by 50 to
150 percent depending on the temperature level and yaw parameter.

The values of the heat-transfer parameter at the stagnation point
on a body of revolution obtained by the present method with the Sutherland
viscosity-temperature relation and a Prandtl number of O.T are in close
sgreement wlth the corresponding results of Fey and Riddell for a real
gas. This close agreement indicates that the ‘heat-transfer rates at the



30 NACA TN 4345

stagnation point of a body of revolution or at the stagnation line of a
yawed cylinder in a real-gas flow at equilibrium dissociation msy be cal-
culated by using the Sutherland viscosity-temperature relation, the
perfect-gas equation, and constant specific heat in the solution of the
boundery-lsyer equations. The flow variables sppearing in the final
expression for the heat rate must be evaluated at the real-gas conditions.

The effects of pressure gradient on the heat-transfer and skin-
friction parameters became larger as the yaw parameter and wall tempera-
ture are increased. Calculations for an adverse pressure gradient indi-
cate that at sufficiently large values of the stream Mach number the
separation line of the chordwise flow would move forwerd as the yaw angle
is incressed.

Langley Aeronautical Laborstory,
National Advisory Committee for Aeronsutics,
langley Field, Va., June 25, 1958.
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APPENDIX A
DERIVATION OF SIMPLIFIED BOUNDARY-IAYER EQUATIONS

The equations solved in the present report are essentially the same
as the equations of reference 21 except for the boundary condition on the
normel velocity at the wall and the assumption used for the viscosity-
temperature relation. The normal veloclty at the wall 1s herein assigned
a Finite value to simulate a porous wall. The injected gas is therefore
assumed to be the same as the gas in the boundary layer; that is, the equa-
tlons apply only for a homogeneous gas throughout. Numericel solutions to
the present equations are obtained for both a& linear viscosity-temperature
relation of the form

=By
Bo= T (A1)
Tw
and for Sutherland's relation
3/2
L _(T Iy +8 (A2)
- T, T+ S

In both equations (Al) and (A2), K, would be evaluated as a function of
T,;, from the best viscosity data avellable.

Since the baslic equations for the compressible boundary layer on
the infinite cylinder in yaw are given elsewhere (for example, ref. 21)
they are not repeated herein. The assumptions and restrictions used to
obtain the following equations are

(1) Prandtl boundary-layer equetions for the steady flow of a homo-
geneous gas

(2) Perfect gas law
p = PRT (a3)
(3) Constent specific heat and Prandtl number
(4) Cylinder of infinite length (spenwise derivatives vanish)
Introducing the stream function and the Stewartson transformation in the

same manner &s in reference 21 then results in the following system of
equations In the transformed coordinete system XZ:
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Chordwise momentum equation:

éi_a_zl._é‘i’..ae_*=u_£%[(1-tw)e-(1_ts)32+tw]+vta—az-@.a_2_‘{)

JZ X 3z ;X yz2 - Ts X dz2
(ak)
Spanwise mcmentum equation:
S¥ o o¥oe_, Of43e
X ozt az(¢ 5% (85)
Energy equation:
Sy _dyde 1-0 dvaby _ve D[40 1- Ny fu® 2
0Z X OX 02 1 - %, 02 dX Np. oz | oz 1 - t, 92\ 2T,
(46)
The Stewartson transformation used in equations (A4) to (A6) may be
defined as
N
X
X = f By Py Be gy
o Ht Pt 8t
ge [%p ,
U =¥
oz )
and the stream function 1ls defined by
o _ p
3z Ry ¢
a\y Lo
ox Py v

The viscosity function @ may be written as
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¢=%T—T“- (a8)

on account of the perfect-gas law and the fact that = 0 1in & thin

Sl

boundary layer. In general, T may be expressed as

2 2
T Tg|(2 - o - (1 - te)e® 4 v - TR 2

a.t e

from the definitions of H, 0, and g and the use of the adisbatic-
energy equation for the externsl flow. The quantity ts depends on the

spanwlse velocity and can be written in terms of the stream Mach number
and yaw angle as

1 s 1+X ; 1'Mm2cos?A
tE_l_=l_7;1e.) - (49)
5 A 2 \&t y -1, 2
1+ =M

which indicates that t; 1s simply the ratlo of the stagnation tempera-
ture of the flow component normal to the cylinder to the total stagnation
temperature. Note that the yaw parameter t; as defined here 1s the

reciprocal of the Mach number--yaw-angle parameter used in reference 21.

Similar solutions to the system of equations (A4) to (A6) are
obtained by first assuming that the dimensionless velocity and enthalpy
profiles U/Ué, g, and 6 are functions of a single similarity varis-

ble 1 and then determining the additional conditions required to reduce
the system to ordinary equations (see, for example, ref. 14). The simi-
larity varilable is defined as

m+ 1 Ug
= € AlO
1 2 VX (A10)

and the assumptions for the profiles are

5 )
¥ = d;r:jji théXf(n)
g(n) 1 (a11)

e(n)

|
I

@D
[
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U 1
where U_ = ?- and = ' = M., Then, if the extermal flow is of
e B¢ e Tfe Ug ’
the Falkner-Skan type

Ug = CX® _ (A12)

the system of equations (Ak) to (A6) is reduced to the following form:
d " " 12 1 2
Sﬁ(ngf)+ff=;5(f) -;t-;[(l-tw)e-(l-ts)g +tw:’ (A13)

5%(¢g') +£g' =0 (A1k)

__a_ 1 l_éNPfo‘l'e dt‘i._.
aq(¢e)+NPrfe m+ 1 1-t, dX

bt izt lend ¢ (- w)@)y) W)

where the primes denote differentiation with respect to 17, and

B = -—gg—i—. The boundary conditions on equations (Al3) to (AlS) are
m +
now, at n = 0,
2\ -1/2
v
= o v 7 -1 Ug due 1
f L. ﬁé.+ 5 a.eejdx (A16)
where w, = O for a nonporous wall and
ft =86 =g=0 (A1T)
At 1 =,
f'* =6 =g=1 (Al8)

For zero serodynemic heat transfer, the wall temperature in equa-
tions (Al3) to (Al15) is replaced by the adisbatic wall temperature Tg.
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Since T,, 1is then an additional unknown, an additional equation or
condition 1s required in order to evaluate T, .. This additional condi-

aw
tion is

d\ _
(a—n>w -0 (A19)

from the definition of 6. Since %, and u. are, in general, func-

tions of X, equations (Al3) to (Al6) are not yet comnsistent with the
original assumptions for the profiles as given by equations (All). A
consistent set of equations cannot be obtained when tw is & varisble

except for incompressible flow (tw ~1.0, tg =1.0, uy, ae) for which
t, may take the form (see ref. 9)

t, =1+ AX"
For compressible flow it 1s necessary to specify that <+, 1is constant.

While the chordwise velocity U, must always satisfy equation (a12),

the specific value of this velocity required to make equations (A13) to
(A16) consistent with equations (All) depends also on the viscosity
assumption and the value of the Prandtl number Np,.. For arbitrary

values of ¢ and Np,., ue must be either zero (or negligible) or a

constent other than zero. The first term on the right in equation (Al5)
and @ +then become functions of n only. When ue 1is constant, B = 0,

and the equations reduce to the flat-plate case, which is not considered
further herein. At X =0, u, =0 and the equations describe the flow

at the stegnation point on a body of revolution (where B = 0.5 and
tg = 1.0) or at the stagnation line on a cylinder (B = 1). Equations

(A13) to (A16) then reduce to
(") + £ =8 (f')a-%[l- tw)e-(l-ts)gz+tw:l (a20)
(fg')’ + fg' =0 (a21)
(Fo') + Npp£e' = (1 - NPr)u[gs(g)']' (a22)
-ty .

£ = o [l’E 9“—6]-1/2 (a23)
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with the remaining boundary conditions the same as equations (AlT) to
(A19). Equations (A20) to (A23) apply epproximetely when u, << a,
which occurs, for example, in the nelghborhood of a stagnation line
where f£ = 1.0. Small chordwlse velocitles would also be expected over
the entire cylinder for large yaw angles when the value of B may be
arbitrary. Note that equation (A23) specifies & chordwise distribution

of W, since £, must be & constant.

In general, when ug % 0, a consistent set of equatlons can be
obtained only for the condition of Np, = 1.0 and ¢ = 1.0. The condi-

tion ¢ = 1.0 is obtained by substitutling the linear viscoslty relation
glven by equation (Al) into equation (A8). The equations (A13) to (Al5)
then reduce to .

£ £f = pd(£)? - ;G:-L-[(l - )0 '_- (1 - fcs)ez + tw] (a2k)

s

8" + fo' =0 (425)

where for these conditions 8 = g, from the boundary conditions (A16) to
(A19) and equation (Alk) with @ = 1.0. The boundary conditions applying
to equations (A24) and (A25) ere the same as equations (A16) to (Al8).
Since f.. must be a constant, the normal velocity at the wall varies
according to :

/2

1

2
_ Las y =1 due
Ww——fw-B—l+————2 Ejz—dx

or in terms of the transformed coordilnate

- M 8o fm + 1 -1
e (126)
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APPENDIX B
INTEGRAL EQUATIONS IN TRANSFORMED PLANE

A large group of spproximate methods for calculeting laminsr-
boundary-~layer characteristics are based on the integral equations
which are obtained by integrating the partisl differential equations
across the boundary layer normal to the wall. After sultable assump-
tions are made for the veloclity and temperature profiles, the procblem
is thereby reduced to the solution of a set of ordinary differentlal
equations. Even though the original boundary-leyer equations are satis-
fied only on the average, these methods are usually consldered to be
sufficiently accurate for practical purposes. (For & general review of
integral methods, see ref. 26.)

Some of the "piecewise" methods (for example, ref. 1) which use
baslc information from the similar solutions are also found to satisfy
the integrel momentum or energy equations.

In the epplication of integral methods to the compressible boundary
layer, substantial simplificetions are obtained by transforming to the
XZ-plene. The velocitles in this plane are defined in terms of the
stream function V¥ as

o
"
¥

a T (B1)

<

W=-

&

\,

so that the continuity equation is

U W

Substituting equations (Bl) into equations (Ak) to (A6) of appendix A
ylelds

W,wl_Te Wl _ - (1 - t5)e? 2 (g U
UBX+W8Z—tsd.X[(l &) - (1 - t)e +t"’J+V’° az@az) (33)
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§§+Wa—g= t%(¢$) (BY4)

e T (s - R (ie) ¢ - A 3E)

where the adisbatic-energy equation for the external flow has been used
in the last term of equation (A6). The boundary conditions for equa-
tions (B2) to (B5) are, at 2 = 0,

U=86=g=0 (B6)
W=W, (BT)
where W, =0 for a nonporous wall; end, at Z -,
U =10, (B8)
g=6=1 (39)

The conventional boundary-layer assumptions also require that all
derlvatives of U, g, and 6 become negligible for large values of 2.
For zero heat transfer the additional condition (36/dzZ), = O is used

to determine the adiabatic wall temperature T... Combining equa-

tions (B2) and (B3) and integrating from Z = 0 to » with boundary
conditions (B6) to (B9) then yleld

o« © 0
_d_f .E-Ua_.edz_gﬂ.;..uijau_e 2f l-%d_z-;.fé_-ldz-;-
ax oUe Ue . e ed.X OUe Ue 0 U

a-t) [e-Har(n-1) [Ta-om =;—Z(@%%)w

(B10)
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Equations (B2) and (B4t) can be combined in the same manner to give

a.xf (l-g)dz —E+Ui-gx—f —(1 g)dz = ;’:@2) (B11)

Similarily, equations (B2) and (B5) yield

Uy __w 1% rPu,
d.X f (1 8)dz U = . Ue(l 8)az -
1 dy, %y V¢ (3
—¥ 1-0)az = Bl2
1-t%d4&X Jo Ué( ) NprU, <§Z) (222)

The integral-thickness paremeters are defined as follows:

*_ mU-Ude
/&%
5* U[HD( - ll)dz
0 Ue

@
I

Y A
G fo (L - e2)az
_ " (813)
_ U
E L/; ﬁ;(l - g)az
-]
8= fo T}I—e(l - 8)az
8° =/ (1-e0)az
0

Substitution of these parameters into equations (B1l0) to (B12) then glves
the finel form of the integral equations as
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40
a% 1 We [ ox , g* 1[ -t _e*|l s (2 U Wy
= T o & 26™ + & +"t_s'(l )G + (t, - 1)6 -5z o), T T
(B14)
& .E_d&=r£(§) ¥y

d_x+UedX UeBZw+Ue (B15)

@8, ofl Fe _ _2  Stw)_ Y& () ,
d.X+8<UedX 1-t.,,dx) NPrUe\aZ)w+Ue (B16)

The normal veloclty at the wall in the transformed plane is related
to the corresponding velocity In the physical plane by the relation

WW=“’tatw

by Be W

from equations (A7) and the definitions of U and W.
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APPENDIX C
UNIQUENESS OF SOLUTIONS FOR NEGATIVE VALUES OF B

In order to discuss the uniqueness problem for negative values of
B (see refs. %, 5, and 14) 1t is useful to consider the asymptotic
solutions to equations (A24) and (A25). These equations apply for
¢ =1.0 and Ny, =1.0 and are as follows:

gm o4 opir = pd(£1)2 - %l; [(1 - 4,08 - (1 - 1-.3)62 + tw] (c1)

e" + f8' =0 (c2)

The boundary conditions are, at % = O,

f =1, (c3)
f'=6 =0 (ch)

and, at n -,
£' =0 = 1.0 (c5)

The functions f£' and € may be written as

£1 =1 - F (c6)

e=1-8

where, at large values of 1, f and & are small quantities because
of boundary conditions (C3) to (C5). Substituting equations (C6) into
equations (Cl) and (C2) and retaining only the linear terms in T

and 6 result in the equations

' 4+ F'f = 2pF + ;36<l—+-t—"l - ) (e

tg

8" + £8' =0 (c8)
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which are valid only at large values of 1. The boundary conditions
for 7 -« are now ) '

F=0

Ler] ]

=0

The function f may be written by definition as

|
f=fe+f £1ay
e

which, from equations (C6), becomes

1
f=fe+f (1 - F)dy
ne

If the quantity u/\ f dn 1s assumed to be negligible, the asymptotic
e

expression for f 1is

T=1f, +1- " (c9)
Introducing the varilable ﬁ defined as

A=+ (2 - 1) (c120)

and substituting equation (C9) into equations (CT7) and (C8) then result
in

d°F . af = =1 +
EE‘”‘EE:QBP'BG(T:E') (c11)
2= =
%'T_Tg+ﬁ:—%=o (c12)

The required solution to equation (Cl2) is

2 1=2
- r%-fe ® 21 -
8 =6 ./‘ e dn
g
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since from equation (C10) ﬁe = fe. For large values of ﬂ this rela-
tion mey be expressed as (see ref. 27)

i £ 2'ﬁ2
-¢! __e2( %) (c13)

n

Thus at 1 = L vwhere 71, 1s such that (C9) 1s satisfied, the asymptotic
solution for © .as given by equation (Cl3) requires that approximstely

8
6, = 1 - 3_‘-’2' (c1k)

which may be verified for B = 1.0 <from the tsbulated results for
Npy = 1.0 1in reference 21%.

Substituting equation (Cl3) into equation (Cll) results in the
linear differential equation

2 =2
4°F - 4 4 ' %(fe -1 )
—2+ﬁﬁ;-2sf=a<t—t"-2)eee—— (c15)
an dn s 1
A particular integral of this equation walid for large values of 1'1 is
=2
. F
f=A8_ (c16)
9
where, by substitution in equation (C15),
lp 2
- -l_. 1 + .bw - t g e 1
A= 2<—ts E)Bee (c17)

The general solutlon to the homogeneous part of eguation (c15) for large
values of 71 1is (see ref. 4)

F = _'__EB + k2P (c18)
-(28+1) 17 N
n e

where for B> 0, K =0 1in order to satisfy the boundary condi~
tion ¥ =0 for n = .
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For B < 0 +this boundary condition can be satisfied with any
finite value of K and the general solution to equation (C15) then

becomes
%_fE
£,= 1 (1_l+tw-)e| e e
2 2t e
1z~ =1
i

which is velild only for large vaelues of 7 and B < 0. Since equa-
tion (C1l9) is a solution for any velue of K, further restrictions must
be imposed before a unique solution can be obtained. Hartree (ref. k)
sets K = O for reasons of continuity and consistency with the B> 0
case. Cohen and Reshotko (ref. 14) state further that for B < O it
is necessary to set K = 0 +to avold infinite displacement thickness.
For K =0 the constant B may be obtained from eguation (C19) evalu~
ated at 1 = ﬁe. The final asymptotic forms for f' and © may then
be written as

B 2B
: + ﬁ<2ﬁ+l) + KR (c19)

t 2 ]
£1 =1 - 1 f£1-1+t"e—e+f—eﬁl-f'- _ Lt %
%zﬁa-feES l 2tg /T \7 © 2ty JTe

e

(c20)

T
Y — fe (c21)
0

Equations (C20) and (C2l) are now unique solutions for all values of B,
and a study of their properties for B < 0 may be used as a gulde to
obtain by numerical methods the corresponding unique sdlutione of the
original nonlinear differential equations (A2k) and (A25).

For purposes of comparison, consider first the cases for B> 0
end B =0. For B> 0 the first term in the braces of equation (C20)
dominates so that for very large values of 1 there remains approximately

: _
8 1+t
f'zl-_l-_.__j.(- )
1(= 2\ 1 2%
E(Tla-fe)n <]
e
Hence for 9; > 0, f' -1 from above or below according to whether

1+ .
—EE—EE is greater or less than 1.0. All numerical solutions (whether
8
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unique or not) obtalned in the present investigation for Np,. = 1.0
show that Gé 2 0 for both negative and positive velues of B. The

asymptotic solutions for p = 1.0 are discussed in detall in refer-
ence 21.

For B = 0, equation (C20) reduces to

£t =1 - (1-f)
2f2

vhich shows that for f; < 1.0, f' -1 from below.

For B < 0, the second term in the braces of equation (C20) dominates
so that for very large values of 7

2B+1 !
P R S | 1_f--(l_l_tf_‘§g_e
=(f=-f n € 2tg e

which shows that f' —- 1.0 from below if

D =

(1 - f;) > ( - iih)e (c22)

2ty

"l

e

This Inequality would always be satisfied for 9; > 0 and f; <1l 1if

1+
?ﬁ% 1. On the other hand f' —=1.0 from sbove if

' 1+ t,)6e
(1 - fe) < <1 - ﬁi (c23)

which is alweys satisfied for G; > 0 and f; >1 if

1+t 1+ %
5T ¥ = ) ¥ NS 1.0. Apparently a unique solution is possible when
8

1+
velocity overshoot (:E:3 > l) occurs if _z_t‘w_ A< 1.0 and equation (C21),

as well as all boundary conditions, is also satlsfiled. CThe situation
for negative values of B, or adverse pressure gradient, is the exact
opposite of that at positive values of B, or favorable pressure gradient,

vhere velocity overshoot occurred for l—;tﬂ A> l.O.) In the present
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solutions for negative values of B the smallest value of E;%%EE A

is 0.8, a value corresponding to % =0 and A = 1.6. (Solutions for

A = 1.0 are given in ref. 14.) If a valid solution with velocity over-
shoot 1s possible, it would be expected for these values of tw and .

A series of solutions were then obtained for t, =0, A = 1.6, and

B = =0.2 for different values of 1, say n*, at which the convergence

procedure as described in reference 21 was aepplied. Pertinent values

from these solutions are presented in table VI. Examination of the tab~
el

ulated values of (1 -t ) and (1 _1rtyo)% _ 0.2 shows that when

2 fe fe
inequality (C23) is satisfied the boundary conditions on f£' and 6 at
Jarge velues of 1 are not satisfied. Furthermore, equation (c21) is

not satisfied since eé alweys remains positive even when 6 > 1.0.

The boundary condition on € was not satisfied to a high degree of
accuracy until fé < 1.0 for all values of 1 whereupon the inequality

(c22) was satisfied at 1 = 6 and 8. It is therefore concluded that for
the particulasr convergence procedure used herein it is not possible to

: 1+t
satisfy equations (C20) and (C2l) simultaneously when 5 A< 1.0

and velocity overshoot occurs. In other words, while equation (C18)
permits a unique solution with velocity overshoot, the required boundary
conditions on © and ©' cannot be obtained when velocity overshoot is
present.

The results shown .in table VI also indicate that increasing n*
from 6.8 to 10.4 resulted in no change in fw and 9 and very little

change in any of the tabulsted values at comparable va.lues of n. The
same behavior was noted in several other sets of solutions at different
values of tw, A, and negative B.

In view of the preceding discussion concerning the asymptotic solu-~
tion and alsoc because of the tendency for f and B to approach con-

stant velues as q* 1s increased, it was assumed that in general, unique
solutions could be obtained by using n* = 8.0 provided that f' <1 for
ell values of 1 and the boundary conditions at 1 = 8.0 were satisfled
to within 0.00001 on 6 and £', and to within 0.00005 on ©' and I".
All final solutions for negative velues of B as presented in table IV
satisfy these conditions to this degree of saccuracy.
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TABLE IIX

BOUNDARY~IAYER PARAMETERS CALCUIATED FOR STAGNATION FLOWS BY USING SUTHERLAND VISCOSITY~TEMPERATURE

REIATTON AT PRANDIL NUMBER OF 0.7 WITH NONPOROUS WALL

(a} Body of revolution; B = 0.5

8 by £, 5:; 6, % (h) Ber Gy 91-:- Bt
‘E{:B-dimenaional

0.025 | 0.2951) 0.2518 | 0.2168 | 0.1625 0.3066 0.T72T | 1.0416 | 0.892k | 0.2325
.050 3654 | JBohdl | L2623 | J2LhT 3709 .8582 1 1.18721 1..0093 2772
070 L3ouh | 320 | L2797 .2821 <3955 8839 | 1.2366 | 1.0481] .2932
0.005 .100 A30h | 3hT2] L3000 .330L hok3 L9081 1.2889 [ 1.0887} .3109
+150 L7921 3G | 3253 (3982 L4601 9288 | 1.346L | 1.1325| .3308
.200 52011 3976 | 3446 h561 L4873 9371 | 1.3836 | 1.16061 .3439
.250 55621 h1s2| .36021 5075 <504 .9388 | 1.510%§ 1.1803 | .3529
300 580 .JA301| 3734 .55L1 .5280 1.4301 1 1.1946 3593
0.06 0.4115 | 0.341% | 0.2950 | 0.3202 0.4173 0.9172| 1.2882( 1.0889] 0.3098
0.02 .20 5292 ko055 | 35171 k823 Jboth . 1.4021{ 1.2746 | .3505
.50 L0 LLST| Akl L7210 .5856 S10k | 14779 1.2281) .3706
0.0625 0.1875¢ 0.544k | 0.4223 | 0.3668 | 0.5434 0.5187 0.9712 ] 11448 | 1.2068] 0.3661
: 625 .T681| .4oBo| .L3h1| .8185 .6139 88771 1.4950] 1.2395] 3711
0.2 0.05 0.6134 | 0.5220 | 0.4558 | 0.9517 0.6h46 1.1925 | 1.7611| 1.4552} 0.hk722
- 50 LT2h01 Jho3h | L305| .8250 .6088 9248 | 1.514 | 1.2546| .383%5

(b) Yawed cylinder; g = 1.0

0.015 0.3321 | 0.2582 | 0.2218 | 0.2218 | 0.1625 | 0.7352 [ 1.0097 | 0.87hkk | 0.2291

.050 L1T7TE 3125 L2689 (2689 .ohhT 8116 [ 1.1603 | .987h 2720

1.0 .100 5010 | 3578 | .3084 | .308k | .3304 .8508 | 1.2566 | 1.0628 3033

.200 6225 | .5118| .3558| .3558 1 k561 8628 | 1.3438 | 1.1289 331k

300 T206 | Jhma] .3870) 3870 L5541 8482 | 1.3844 | 1.1585 41T

.015 53751 31645 2459 | 2Th3 | .2787 55601 9763 .T9EL .1866

050 6912 .383)3:L 2970 .3327| 4197 58721 1.1069| .8878 2103

0.005 | 3.0 om0 1.0963| So7h} .3850| .hiz| .7822| .5250|1.2616| .B7ok | .1993
.8981 2.2964 | 697510 1.6262 L0687 | 1.2860} .2883 | -.1281

.015 1.15372| 4099 .3058| .3555| .5154 0985 | .8411} .65TT | -.1235
11.0) 99 1.4952 | JhkoBo| 36951 1321 L7732 02721 L9507) .T310 | -.2005

. .200 2.502h | .66k7| 4780F .STTH| 1.MhI1 | -.2593| 1.0682{ .T82T7 | ~.5160
8622 5.5196 1 .9211 | o 2,9361 | ~1.13TL| 1.0404] .0600 |-1.8733

0.0655| 1.0 0.1875 0.6463 | 0.4366 | 0.3782| 0.53782| 0.5434 | 0.8959] 1.%051| 1.1755 | 0.3528
: . .625 9850 | .5228| .45ho| .45h0| .8185 L7624 | 1.4358] 1.1933 3350




TARLE IV

BOUNTARY~LATER PARANETERS CAICUTATED FOR ARETTRARY PRESSURE GRADIENT 0Y USIEG LINEAR
VISCOEITI~TRMPERATURE RETATTCH A'f PRANDIT, RUMEER OF 1.0 WITH WONPOROUS WALY

{n) Hegativa presmprs gradient; g > O

ChEh NE VOVN

Bty [ 2] £ |0 gl 2 |9 |eh |en et [n] = o, or g| 85 | 6 | el o
1.0]0.5 0.8821 | 1.1306 | 16470 | 1,1862 | 0.M457 1.0 0.6987 0.5147 | 0.9% | 1.55835 [1.1215 | 0.3914
o 1.6 .5% h8or | 1.0837 J..&a:{rg 1.1750 | b3k o 1.6 .8235 S5562 8061 | 1.5037 | 1.0811 3hep
3.0 .6237 .3039 2 | 1.5652 | 1.1h18 | .3961 3.0 | 1.0907 STTR 5682 | 1.5088 1,011 2249
6.5| .1939 5340 6852 | 1.5032 | 1.0815 | 3158 6.5 | L6 6507 L163% | 1.0685 | L0082 | -.os88
10| .6070 4051 | 1.08%0 | 1.6106 | 1611 2,01 12,1090 5T 7200 | 1.5596 | 1.0h78 J859
o.2| s|1-6] -68% 3082 . L2715k [ holk fly 51 . ) 2.6( L.43H8 5928 83135 | 1383k | .9m5 .
- 3.0| .83506 .53k B121 | 1.5082 | 1,084% | 5418 3.0 2.1149 6550 L2100 | 1.9658 | .90%1 )
6.5 | 1.2201 5045 5215 1.39%% | .9999| .19%8 6.5 | 3.5669 o2 | -.2850 | 12079 7900 | -.5178
1.0f .68a7T| 5069 984 | 1.5800 | 1.13T6( .hoBe 1.0 L.kTTR .5906 5579 [ 1.390% | L9963 [ .2562
1.6 eulr'{ 575:5 8 1.3;83 ll02g| 572e 1.0 |16 1.9737 6350 334 | 1.3050 ] 933k 1190
1.0|.5,0| 1.0578 5893 6m3 | 1., 1.086| 8855 2 |5.0} 2.9997 gm'r ~0296 | 1.1800 | .Bkal | .1
&5 6221, 23300 | L3199 | .9mE| .OTTE 6.5 a.1729 8383 | -.5T72 | 1.0205 | J7R66 | -
1.0] 0.3801 | o.k%he | 1.0531} 1.6130 | 1.16235 | 0.he38 1.¢| 0.7386 0.5206 | 0.904% | 1. 1.1106 | 0.3837
o |26 J0T0 9705 | 15773 | L1358 | L3961 0 1.6 .8837 bl L7651 | 1.h8kg | 1.0672 3287
3.0l 711 »5380 8072 | 1.5095 | 1.0857¢ ,3511 3.0 1.1959 5891 513k | 1.384T g-g"gz 197
6.7] 1.0889 5828 SS05T | 1.3950 | 1.0000| L1703 6.5 1.8712 6682 L0861 | 1.2%56 | .BBAL| -.133e
1.0 .7609 %187 5168 | 1.5h08 | 1.19%1] 385 1.0| 1.2405 5686 6705 | 1.456% | 1.0304 101
1.6 .918T LLNT) S84S5 | LA93TE Lo3s| 33T 20| 5 1.6| 1.6289 6073 lu;@ 1.};2 9Tk 2051
23] 3350 1.;:22? -5833 Shs3 | 1.3983 | L.oo31| 295 (|59 3| 3.0] 2.4366 .%1;2 oL 1.2 % - 0423
6.9 1. S5TT L1482 | 1.2557( .8985| -.06TL 6.9| &.1961 . - 10760 | . - GHAT
1.0} . 53590 . 1.4390| 1.0780| .3903 L.0] 26871 052 Jomh | 1,36 9760 2508
1.0f 26 1.% .568k 6396 | Lhzea| Le2re| .2 2.6| 2.2804 Ggg 262k 1.2735 gﬁ a2
*“| 3.0] 1.6625 6e13 3550 | 1.3237| .9h81 L.0l 3.0] 3.5031 3% | -0} 118801 . ~-26850
652,78 .1 | -.095] 11Tk B37h| -.2089 6.5| 6.0876 .=-8657 a--Ga:»'r JBB| om a.l.mu
6.5/%.08%5 8536 |®-.6835 | “.0893 | ".10%5 }F-1.1017

Pag = 0.1.

¢




5 NACA TN 4345

TABIE IV.- Concluded

BOUNDARY-TAYER PARAMETERS CATCUIATED FOR ARBITRARY PRESSURE GRADIENT BY USING LINEAR

VISCOSITY-TEMPERATURE RETATION AT PRANDTL NUMBER (F 1.0 WITH NONPOROUS WALL

(b) Positive pressure gradient; B < O

B[t I A | £ fol or g, | B | G | @ | Ger
-0.3264 1.0 |o 0.2478 3.4567 | 2.9751 | 2.2048 |0.6067
~.2800 | .2233 .3932 1.8257) 1.9707 | 1.4282 | .5912
~-.2Th7 1.6 |o .2580 3.2636 | 2.8691 | 2.1119 | .6083
~.2000 .3318 L4314 1.50501] 1.8172 | 1.3139 | .5380
-.2000 | © 43T 3616 | 2.0955 | 2.115% | 1.5570 | .608%
~.1943 3.0 |0 .2688 3.0713 | 2.6987 ] 1.9809 | .6093
~.1000 3567 L3304 1.43951 1.7878 | 1.2921 | .5229
~.1004 6 0 2770 2.9338 | 2.6255 | 1.9261. | .5963
~.1000 2 | 1782 3789 | 1.9268 | 2.0%07 | 1.h737 | .5887
~-0.2623 0 0.3076 2.5861 | 2.4071 | 1.759% |0.6067
-.2500 1.0 | 1415 T8 1.922k | 2.0314 | 14747 | 5837
-.2000 .2507 J152 1.6136 | 1.874#7| 1.3572 | .54T2
-.1913% . o] 3164 2.4665 ] 2.3463 | L. 7240 | .5923
-.1500 1.6 2115 WITyITS 1.6905] 1.9151 | 1.3877 | .5541

0.
-.1153% 2 0 3235 2.3733 | 2.2995 | 1.6789 | .5802
-.1000 3.0 | .21 .3834 1.8526 2.00221 1.4534 | .5653
-.0500 3345 393 1.4266] 1.7854 | 1.2906 | .5133
-.0573 0 3279 | 2.3173| 2.2721| 1.6579 | .5726
-.0500 6.5 | L1242 379 | 1.8795 | 2.0191 | 1.4663 | 563k
-0.1988 1.0 |0 0.3258 2.3588 | 2.28701 1.6694 {0.585%
-.1%66 o 3316 2.2858) 2.2507| 1.6423 | 5752
-.1000 1.6 | .2098 1086 1.6479( 1.8970 | 1.37hk | 5427
-.0500 .3561 LsT 1.37861 1.7630 | 1.2740 | .5030

1.0
~-.0783 o 0 .3361 2.2308| 2.2234 | 1.6219 | 5671
-.0500 3:0 1" 2ot 4179 | 1.5755| 1.8610| 1.3875 | 5322
-03TT 0 .3388 2.1979| 2.2071L}| 1.6098 | .5623
-.0200 6.5 | .2805 1283 | 1.4989| 1.8228| 1.3188 | .521h




TABLE V

CONSTARTE 1N INTERPOIATTON FORMUTAS POR h ARD L.

AS GIVEN BY BQUATIONS (47) ARD (48)

|_Fl
!
™y
o
™
j
Tl
1]
S
~
=
Oy
1
o't

H
L]
=]
o

[
VoD

OV [

oY e
MO OO

I:a\':x!—-I—'
[« RS Fole Vol

o0 ;O

FO\U]—'I—'

0.04668 ]-0.01396 |{-0.05096 }-0.12598 |0.0TTTE |0.24070 [0.72755|0.50667
05554 | ~.02252 | -.0573% | ~.135%9 | .10708 | .21902 | .70699] .52k85
L06118 | -.037%6 [ ~.05850 | -.1369T7 { .15428 | .18900 | .67936( .56027
L0601k | -.06010 | ~.05106 | -.12669 | .22183 | .15380 | ,64936|. .6233%9

02512 | -.01127 L0047 | -.08285 | .0T23 12500 | .51503] 43605 | 1.0 io

Ob05o | ~,02156 | | -.01229 | -.00065 | .10276 | 12118 | .5058T| Mh7so | o443 | 03162
05727 | -.0k113 | —.oo600 | o.aanoh | L1337 |3 | Jhsore| mes | LoowsT Il L05c08
0753 | —.omubol | -T1asks | 22776 | Jooks6 | nqorh| sisks | lBeses || .o539s

.01520 06139 05276 | -.06536 |-.0T20k | 11252 | 502%3| 46955 |1.0 0

02280 | .06209 OL26k | -.07212 |-.00513 | .10488 | .40636) .hosaT | .943ko || .03163
.059?0 05428 03050 | -.07672 -.01867 00435 | 484315 53207 | 9012k || . 9|8h
L0540 036730 OL798 | -.07212 | 03767 | .OT9HL | .46586] 59276 | .BTOTH || 05348
03648 01810 01263 | -.06686 | .0B060 | 06974 | JA5heL| 64652 | .B7303 || .0508%

00692 -.gﬂ -.13350 -.ghsgh'r .15}31;52 %132 lltgagg .2 1&* ‘0 y
. -.194%90 | -.065TT | .Whige .19& gy 302 .zgﬁ_.o%'r

06656 .-:50069 -~ 15457 | -.08570 | .62598 | .141k9 :h7390 :5911+5 .BT192 :05557
07094 | -.35068 | -~.13502 { -.068400 | .TA785 | .12305 | .46555[ 43428 | .86353 | .05080

3
&
1t
5
&
:
2
=
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MLE VI
TIPICAL XBSUIRG TLLUSTMTING (ROQUENESS PROBLEM FOR POSTTIVE PRESSRE GRADTEND
[h,,,-:..o;x-l.s;t'-o,r,,-u;p-.o.a] .
1 £ ) 'Y a ~ 1ap 028 M t . 2 w 1~ 1-g ol
° 0 ° o lossesme 0345808 2 " 0 0 o o o436 0.331800 1 -
*s8h.6an| 2 1 18369 x 107k | .2778R x 102 G 0.15508 x 1072] h.of 2.h97303 10.99565 |0 o9ahas | 12284 x 1071 | 239 x 1072 Jo.0o7sTS | 0.58150 x 10-3
.0[2.5567h81.00251:01.004355| 1184 x 201 | 16863 x 12 l-0.00h395( 87982 x 03| s.03.495062| .oucmms] o906 | 61629 x 2073 L13T x 1072 00056 | 33966 x 1o-%
5.0 [5.564966 [ 1.0066804 2..009%36| 530 x 10-T | -.11370 x 10-3 | ~.co36] .30 x 108 6.01k.hoks81 | .999997] 999955 11668 x 20+ | 83769 x 20+ | .o0c003| 5180 x 1078
6.0 [b.575220 {1.,006817]1.008815 | 9371 x 1075 | -.65838 x 30-3 | -.008818] .Mc80 x 106 ﬂs.aﬂa.zgngeo 1 1 k50 % 106 | Sasex 06 | o 9 x 108
8.016.590600 |1.006819| 10077 | .2 x 10-9 30837 x 10753 | ..00TDH -] 8.0]6.4sh979| 1 b3 3 x 1079 -.29 x 1008 ] o
0 [} ] ° 433052 334808 1 " o ° ° 0 A3L366 1331800 1. -
4.0[2.300764| 997029 .995076| 12016 x 20-) | .19692 x 21| .ooksah| 95716 x 20-3] h.ofe.gmoM| .95s65k| .omvam | .1228h x 20-1 | 20539 x 10-1 0oT576] 78250 x 1073
a4 f2000mma| 1 1 |06 x202 ) 6aossx 202 0 | .27960 x 20°5) 3.0[5.u99061] .999636| gaseen | 1529 x 1073 | 1357 109 .coomus| 35266 x 20°%
5+03.510671 [1.001114{1,001825 | 59576 x 103 | .BE36T x 20-3| -.002823| 33528 x 20| 6.0[n.A5h980] .999998) .9999%5 | 12669 x 20% | .a37B2 x 20~ .c00008| .3180 x 10
5.6 4.111855 [1.000056{ 1002970 | .6136% x 20-* | -.68378 x 10-% | -.002970] 29809 x 20-3] *7.4]5.85k079| 2 L .97 x 108 ok x 10T [ «3 % 109
6.0b.512613 [1.001270| 1-cor9e3 | .11101 x 207F [ -.1306 x 2073 | -.002923} 900 x 106 a.ﬂsm 1 1 3 x 109 5 x 108 ° 0
8.0[6.516206 1..001eTRl 1.002687] .3 x 109 ~-91320 x 1074 | - 01687 [ '
. [ 0 o [ 431366 351800 1 -
° ° Q 0 A31607 3581 1 - %.0{2.597904 | 959654 ] .gpahan ]| 125k x 20-1 | Lacomag x 3071 Lcopis| 5B x 2073
b.ofr.hoonss | (995633 .99e817] 1228 x 207 | Le0b11 x 2071 | .ooT183| .o7TM x 10-3] s.0f5.ngma6n| .smeane| .oesen | 61629 x 3075 | 1umvy x 2072] .oconas| -Emass x a0t
*3.0[3.497387 [1.0 1 £2316'x 103 | 1109 x 02| o +3506% x 104§ 6.00h.454900 | 995998 .999995 | 21669 x 10-* | .23785 x 10°%| .coom| 5180 x 206
'[P6.0 4. 457603 [1.000161{1.000078 | 11962 x 107 |- T7h x 106 | -.000218| 5150 x 1075 § *s.0l6asvome| 1 1 5 % 1079 39 x 108 o [
8.0[6.498131 [1..00016% [ 1.000248 [ .3 x 10-9 -A372T x 20-% | -.000048 6 .
0 ° o [ 31366 +331800 1 -
[ 0 [ ° 451390 331846 1 - k.0{2.497505 | 995658 | .ok | L1225 x 20-1 | .205%9 x 1072| .comam| 56130 x 2073
%.0[2.59TT0T | .995670] .99R46k | 12050 x 10°L | 90826 x 2071 | .0om36] 98090 x 0T s.0[5.u95062] 99505 ] .co06am | G162 % 103 | amwT x 1072 .comis] 25266 x 10
2.0[3.455295 | .99%850] 99976 ] 62597 x 1070 | 1m0 x 202} .oocess] .amerk x 6.0n. 49501 | .o90007] .ogmees | 11668 % 204 | 25769 x 10| 00008 | 5180 x 106
55.6/n.005ak3| 1 1 65950 x 107 | Lzmzx 03| o 31282 x 05| 8.0/6.4shs79] 1 1 3x%x169 |-g9x 108 o T e
6.0[h.kg52h8 |1.000012[1.00002% | 116097 x 10 21962 x 10-% | -.00002 | 9180 x 10-6 ] %6.6{7.00099| 1 1 0 -3a x w8 0 °
56.6{3.095264 [1.000025 [1.00002T] .68TL % 306 |-.37%3 x 106 | -.c00cer| "270 x 20-T | 10.k[e.03978| 1 1 o -2 x 108 ° [
8.016.499300 Fooom 2.00000 ] .5 x WP -.1h1h3 x 1073 -.000025 [}
Q 0 [+] ] H31366 +331800 1 -
o | o ° ° K3L376 (331820 2 - b.ofo.hoT505 | .99563h | .oaohak | 1229k x 1071 | 20839 % 10| .ooT376| 98330 x 1073
h.0f2homoe| .9660| .ggakhal 12252 3 207 | 20033 x 071 | .00738| 98110 x 20-3] 5.0f3.455061 ) .999636) 99068k | 62639 x 103 | .11 x 307%| .oc038] .3se6 x 10+
5.0{3.49516% | .955802] 599696 | 61615 x 1073 | 11328 x 20-2 | o002 .3me%5 x 0] 6.ofk.ugham.| .99999| .o9mom | 166 x 20°% | a7 x 207 o0000n] 9180 x 206
*5.0]n.005006 1 I 21 x 1070 | smox 10| o a206% x 105) 8.0/6.hskere| 1 1 3 x 1079 -8 x 1079 0 [
6.0[4.495096 11 .000004 |1.000007 | 136651 x 20¥ 2866 x 20~ | -.000007} 3180 x 2076 § *v.2|7.60m918| 2 1 ° -2 x 1078 [ °
B6.8|3.255104 11.000006 1.000002 | .2t x 106 ]-.2582 x 306 |-.0coaze] .ok x 108 Ja0.a|s.eoueE] 2 1 0 -.10 x 108 0 °
8.0)6.455117 {1.000006 |1.000011 | .3 x 20°9 ~6143 x 206 | -~.000001 0
0 [ ° ° A31366 1331600 1 .
o| o [ o { .m0 331608 2 - %.0|2.o7s0s | .o96oh| .9gahar | 120 x 2071 | 20839 x 10°2] .coreTE| 58130 x 1o7d
h.ola.kotstio [ 9936361 .95ah3a| 12255 x 1071 | 20937 x 20°L [ .oo7m68| .9B1e0 x 1073 5.0[3.455061] 099836 o996k | 62629 x 1073 | .1amMT x 10| .cooms) 35266 x WP
5.0{3.495103 | 995838 999690 | 61625 x 1073 | 11339 x 102 | .oc0m0| 3526 x 20-¥] 6.0[k.kohoar] 999998 999555 | 11669 x 10°¥ | 23T x .000003] 5180 x 1076
%5.0{h.aom0z8| 1 2 221667 x 107 [ amerx 0% o 100 x 1076 | 8.ol6.agkere| 2 1 3 x 1079 -2z x 108 0 °
b7.012.495032 [1.000002 [1.000005 [ 873 % 30~T  [-.13m4 x 106 |..co00| .32 x 108 | %s.8l.am9m| 1 1 ° -~z x 108 ° °
8.06.495036 |1.000002|1.000008 | .3 x 10-9 -.e580 x 1076 | -.000003 [ 10.0]a.8005718] 1 1 [ -.50 x 108 [ 0
Q [] (<] 0 31368 5N805 1 - o ¢ | o o ] AEE6 ~3LE00 b3 -
hol2.u9Piy | L9655 | .9gebar| 12053 x 1670 | 20958 x 20| oo | 9811 x 10-3]] w.ofa.msTson| .ousemn| omeuok | .o x 10| 20mzg x 20 Loorsre| 58130 x 203
5.0|3.455078 | 999636 .999687| .626a7 x 1073 | .1usik x 108 | .oco313| .3mesk x 10} 5.03.h05061 | .990836) 99968 | 61620 x 2077 | 18%7 x 2072 .oc0mas|- .35266 x 20°*
6.0[4.5h999 | .599998| 999997 | 11668 x 107 | .23097 x 20 | .000003] 2180 x 206 | 6.ofk.asksE0| 999958} .99595n | 1669 x 20 | .es780 x 0% .occom)] 5180 x 206
26.a(h.6v989 1 1 400 x 03 | 9%60x 05| o 2006 x 106 [ 8.0{6.acko78} 1 1 3 % 1079 .20 x 108 ° °
.a{s.688000] 1 1 296 x 10T [-.56% x 20-T ° 52 x 1078 F:o.k 8.6s498] 1 2 o 20 x 1070 ° o
8.0].h5000] 1 1 3 x 078 -.2029 x [ [

‘nnm-moc § et whick

of

SDenctes valse of N at vhieh f" first becama negative.
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Heat-transfer parameter, h-

Yaw parameter, A

(a) Variation of heat-transfer paremeter with yaw-asngle parameter.

Figure 3.- Effect of yaw angle, stream Mach number, Prandtl number, and
;ranspiration cooling on heat-transfer coefficient at stagnation line.
= 1.0; 8 = 1.0.
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Figure 3.~ Continued.
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Figure 3.- Concluded.
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